Berechnungen von Bewegungen - Lösungsvorschlag

Wichtig: Die Standardeinheiten sind: s für die Zeit

m für den Weg

Man kann aber auch in km und h rechnen, muss aber dann umwandeln.

1. Gegeben: $a_{Mond} = 1.62 \frac{m}{c^2}$ m = 756 kg

Gesucht: F_{Mond}

 $F_{Mond} = m \cdot a_{Mond}$ = 756 kg · 1.62 $\frac{m}{s^2}$ = 1'227.72 N

3. Geg: $g = 9.81 \frac{m}{s^2}$ $F_E = 1'120N$

Ges:

a) m $F_E = m \cdot g \xrightarrow{umformen} m = \frac{F_E}{g} = \frac{1'120N}{9.81 \frac{m}{s^2}} \approx 114.17 \text{kg}$

b) Die Masse verändert sich nicht, also 114.17kg.

c) $F_N = m \cdot \frac{g}{6} = 114.17 \text{ kg} \cdot 1.62 \frac{m}{s^2} \approx 184.95 \text{ N}$

5. Geg: s = 100 m t = 12.5 sek

Ges: v

 $v = \frac{s}{t} = \frac{100 \text{ m}}{12.5 \text{ sek}} = 8 \frac{\text{m}}{\text{s}} \xrightarrow{3.6} 28.8 \frac{\text{km}}{\text{h}}$

7. Geg: $v_{\text{Schall}} \approx 340 \frac{\text{km}}{\text{h}}$ t = 1h

Ges: s

 $s = v \cdot t = 1.5 \cdot 340 \frac{km}{h} \cdot 1h = 510 km$

9. Geg: s = 150'000'000 km $v = 300'000 \frac{\text{km}}{s}$

Ges: t

 $t = \frac{s}{v} = \frac{150'000'000 km}{300'000 \frac{km}{s}} = 500 s$

11. Geg: s = 6'300m t = 5min 15sek = 315 sek

Ges: v

 $v = \frac{s}{t} = \frac{6'300m}{315 \text{ sek}} = 20\frac{m}{s} \xrightarrow{.3.6} 72\frac{km}{h}$

Fahrzeuge bremsen, beschleunigen, stoppen, beschleunigen... Daher spricht man von einer Durchschnittsgeschwindigkeit.

13. Geg:
$$s = 180 \text{ km}$$
 $v_{\varnothing} = 72 \frac{\text{km}}{\text{h}}$

$$t = \frac{s}{v} = \frac{180 \text{km}}{72 \frac{\text{km}}{\text{h}}} = 2.5 \text{h}$$

15. Geg:
$$v = 1'800 \frac{km}{h} = 500 \frac{m}{s}$$
 $t = 10 \text{ sek}$

$$s = v \cdot t = 500 \frac{m}{s} \cdot 10s = 5'000 \text{ m oder 5km}$$

17. Geg:
$$t = 8s$$
 von 0 auf $72 \frac{km}{h}$ $72 \frac{km}{h} = 20 \frac{m}{s}$

$$v = a \cdot t \xrightarrow{umformen} a = \frac{v}{t} = \frac{20 \frac{m}{s}}{8 s} = 2.5 \frac{m}{s^2}$$

D.h. das Auto wird pro Sekunde $2.5 \frac{m}{s}$ oder $9 \frac{km}{h}$ schneller.

Nach einer Sekunde ist die $v = 9 \frac{km}{s}$, nach zwei Sekunden schon $18 \frac{km}{h}$, ...

2.	Beende das Arbeitsblatt "Welche Wirkung der Kraft kann man beobachten?"				
3.	Öffne die Internetseite https://www.lernareal.ch				
	a) Gehe auf: Natur und Technik – Physik – Mechanik – leicht				
	b) Löse die Aufgaben.				
	c) Aufgaben 12, 16 und 18 sind freiwillig.				
Schicke	mir deine Antworten per E-Mail an <u>zumti@bluewin.ch</u> .				
	mir mit PC geschriebene Lösungen, Fotos, Zeichnungen, Handgeschriebenes, aber r E-Mail.				
Fragen p	per Whatsapp oder E-Mail.				
Alles Gu	te und bleibt gesund. Abstand halten rettet Leben.				
	Zumtaugwald Patrick				